If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9(x^2)-15x-16=0
a = 9; b = -15; c = -16;
Δ = b2-4ac
Δ = -152-4·9·(-16)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{89}}{2*9}=\frac{15-3\sqrt{89}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{89}}{2*9}=\frac{15+3\sqrt{89}}{18} $
| 8(w+3)=-5w+37 | | 8q+8=(q+1) | | 7u+42=3(u+6) | | -3(7p+2)-2(5-20p)=3(9+6p) | | u2+10=18 | | 0=4.9t^2+1.25t-12 | | 1+x/3=2+x/5 | | X=(x+3)+20 | | 57=25x | | X+3=x+20 | | 0=4.9t^2+1.43t-12 | | 50x-300=1000 | | 2(m-(4m=15)=5)=2(m+10) | | -16p-6(3-4p)=3(p-3)-4 | | 2x+5(x+7)=28 | | Y=4/5+^0.2-5x | | n/5+3=3 | | 1x+1x-11x=-3 | | -6x+8x-6=2(x-3)-3 | | 2^4x=2^x+9 | | 24x=2^x+9 | | t=4.9t^2+1.25t-12-0 | | (6x+20)=4 | | -(8x+4)-2=-7x-(x+6) | | 2x-3=2(x-1)+4 | | 3(2q+7)=15(q-4 | | 4x+6x-2=64 | | 2|x|+8=24 | | 6x-3=60-3x | | 14x+4x=130 | | 180-39-27=c | | 30x+20=420 |